Air Toxics Monitoring

Visibility -IMPROVE & Regional Haze

Ozone -PAMS

Fine Particles

PM2.5 Mass

ď

Chemical Speciation

Inhalable Particles - PM10

AIRNOW-

AQI &

Forecasts

Acid Deposition - CASTNet

National Ambient Air Monitoring Strategy

A Comprehensive ReExamination and Reconfiguration of Air Monitoring
Networks

July 2003

Agenda

- Background/Backdrop
- Background..strategy
- Network assessments
- NCORE/design
- Issues/schedule

Monitoring Program... Administration process... resource flow **Public** Congress **EPA** HQ **EPA Regional Offices 1-10** 300 State and local agencies and Tribes 0 0

Why Do We Need a New Strategy?

Common sense initiative

Most criteria measurements (except O3, PM2.5) well

Why Do We Need a New Strategy?

Principal Recommendations

- Need insightful measurements to ensure the \$\$\$ allocated for emission reductions are effective.
- Enhanced real-time data delivery to public
- Increase capacity for hazardous air pollutant measurements
 - Future predictions suggest air toxics pose collectively greater risks than criteria pollutants
- Increase in continuous PM measurements
- Support for research grade/technology transfer sites
- Multiple pollutant monitoring must be advanced
 - Air quality is integrated through atmospheric processes, health/eco effects, emission sources.
- Technological advances must be incorporated
 - Information transfer technologies
 - Continuous PM monitors
 - High sensitivity instruments to address today's (and later) low levels
 - Model-monitor integration must advance to effect benefits for both tools

Principal Recommendations

- Reallocate monitoring resources from "low-value" criteria measurements to new priorities (HAPS, Fine Particles, etc).
 - Level of realignments
 - Minor (O3, PM2.5) Create a sustainable network
 - Substantial (PM10, NO2, CO, SO2)....focus on real environmental benefit.

Network Evolution 1970-2001

Principal Recommendations

- Revise National monitoring networks through NCore
 - Emphasis on multi-pollutant monitoring, continuous and information transfer technologies
 - Modest initial \$ required to catalyze change
- Ensure stability and flexibility for States, local agencies and Tribes
- Modify monitoring regulations to facilitate change

Key principles

Partnership...now with Grantees (States, locals, Tribes)

- Oversight through the National Monitoring Steering Committee (NMSC)
- Expansion to other agencies, private sector sponsored studies

Balance between national and local needs

- Increase/maintain flexibility for S/L/Ts
- Ensure capable of addressing national level needs

Near "zero" sum assumption in resources

- Maintain long term viability of monitoring agencies
- Near term-work within current resource framework

How & Who does this benefit?

- State and local agencies
 - More focused operations, increase relevancy and flexibility and products
- Tribes
 - Provides integration/partnering opportunities
- Public
 - Faster and more comprehensive data delivery creates a more informed public
- ◆ EPA
 - Stability/consistency in data for major national programs
- Science community
 - Enhanced integration with national networks
 - Increase in continuous and multi-pollutants data sets
- Other agencies and organizations
 - Commonality in data needs...
 - Fosters efficient networks and use of data

Workgroup structure

- National Monitoring Strategy Committee
 - ~ 15 reps for EPA, States, local agencies and Tribes
 - Consensus, strategy formulation, strategy approval
- Three technical workgroups

Address more substantive implementation elements

- Regulations
- QA
- Technology

Dynamic interactions among Strategy elements

Network Assessments

- Emphasis on value of current networks
 - Identify redundancy, low "value" monitors
- Initial National Assessment
 - Catalyze more specific regional work
 - Provide a "reference" and data source
- Regional level assessments
 - Determine actual network modifications...
 - Beyond "network reviews"
 - Region 5/LADCO....model example
 - Workshop...9/03...Region 4
 - Iterative....

National Assessments examples

Reference or base case concentrations

Identifies areas of site abundance & paucity

Summary of National Assessment Results

Ozone

Limited Reductions Nationally (5 - 30%) With an Emphasis on Relocation to Enhance Mapping, Rural/Regional Concentrations, Possible Increases to Assist in Coverage in Southeast and Texas, investment in air toxics.

PM2.5 FRM

Moderate Reductions (20-30% to ~ 800 Sites) "After designations" Coinciding With a Shift to Continuous Methods for AQI/Mapping; Eventual 500 Site (or Smaller) Network Following Successful Demonstration of Cont. Methods

PM10

 Major Reductions From 1600 Site Network (1996) Dependent on Regional/State Rymts; resource shift toward PM_{(10-2.5}).

Summary of National Assessment Results (Cont)

- ♦ CO, NO₂, SO₂
 - Major Reductions for NAAQS Purposes; Switch to Representative and High Sensitivity Techniques for Model Evaluation, Build Into New Core Sites, investment in air toxics
- Lead
 - Declare Victory!....Minimal Trends...emphasis as a HAP Metal
- PAMS
 - Restructure. Reduce "Minimum" Requirements.
- Regional/local assessments due March/03
 - supercede National results
- Divestments invested in priority areas (e.g., air toxics)

National Core Network: NCORE

Goal: Move from loosely tied single-pollutant networks to coordinated, highly leveraged multi-pollutant networks with real time reporting capability

Principal Data Objectives of NCore

- Public Information
 - Real-time Input of Data From Across the Country Using Continuous Technologies
 - Spatial Mapping (E.G., AIRNOW), Health Advisories
- Health/Exposure Assessment Support
 - Input for Periodic NAAQS Reviews
- Emissions Strategy Planning

(Emphasis on Initial Timeframe)

- What are the best emission reduction approaches?
 - E.g., Provide for Routine Model Evaluation and Source Attribution

Principal Data Objectives of NCore

- Air Quality Trends and Program Accountability
 - Does the monitoring confirm strategies are working?
 - Major National Initiatives (Acid Rain, Clear Skies, NOx SIPS, FMVCP)
 - Including HAPS (National) and Visibility Assessments
- Science Support
 - Backbone for More Diagnostic Level Work (Same for Local Sips), Health Studies
- NAAQS Determinations and Related Regulatory Ramts.
 - Emphasis on More Pervasive Ozone and PM2.5

NCore Measurements

Level 2: ~ 75 Multipollutant (MP)
Sites, "Core Species"
Plus Leveraging From
PAMS,
Speciation Program,
Air Toxics

Level 1. 3-10 Master
Sites Comprehensive
Measurements,
Advance Methods
Serving Science and
Technology Transfer
Needs

Level 3

L2

Level 3: Single
Pollutant Sites
(e.g. > 500 sites
each for O3 and
PM2.5
Mapping Support

Minimum "Core" Level 2 Measurements

Continuous N, SO2, CO, PM2.5, PM10, O_3 ; PM_{2.5}, HNO₃, NH₃, FRM, Meteorology (T,RH, WS, WD)

NCORE Measurements, cont.

- Leveraging to obtain multipollutant measurements
 - E.g., new NATTS (air toxics trends) located at PM2.5 chemical speciation (subset located at PAMS)
- Assume multiple measurements provide a synergistic addition to interpretive value of data sets
- Key species (even at trace levels)...C,N,S that are of universal importance for atmospheric sciences (model evaluation and SA); health effects/standard setting, and air management...accountability
- Practical element of technology constraining NCORE2
 - e.g., true NO2, cont. NH3, HNO3
- NCORE2 is a proposal, expecting refinement
- NCORE1resource issues

NCORE Measurements, cont.

{Hydrocarbon measurements/PAMS}

- Lacking specific recommendations for routine VOC
 - Implicit assumption covered through PAMS (and toxics)
- PAMS
 - poor utilization of PAMS data
 - technology, data analysis resource issues
 - "too removed" from end product
 - Relative to PM speciation and air toxics data
 - Challenge to NCORE objectives
 - Inadequate attention to nitrogen
 - Recommended changes:
 - Reduction in required speciated VOC (2 sites per area)
 - NOy requirement (more rural locations)
 - CO required..
 - Consider year round sampling
- Rural/regional measurements
 - Measasurement and programmatic challenges

Proposed Siting Approach - Level 2

- "Representative locations"
 - 5-15 km urban scale
 - 50 km or more...regional scale
 - "contrast with historical search for highest concentrations...at odds with collocation"
- Start With "Reasonable" Coverage From Health/ Exposure Perspective
 - Population Based (Range of Sizes) With Varying Chemical Composition.
 - Assumes Need for Multiple Pollutants to Tease Out Confounding Factors
- Add in Desired Rural Coverage for Accountability
 (Major National Programs Such As 3P, NOx SIP)
 "Operational" Model Evaluation
- Equitable Resource (and Constrained) Considerations
- Determine Ability of Existing Networks to Address, Modify Supplemental Information

Proposed Siting Approach - Level 2

Urban & Rural PM2.5 Speciation Networks

Today

Air Toxic Monitoring

Visibility -IMPROVE & Regional Haze

> Ozone -PAMS

Fine Particles - PM2.5 _ Chemical Speciation

Inhalable Particles - PM10

Acid Deposition - CASTNet

Future Directions

Core

Core + PM spec

Core Spec Toxics Core PM Spec PAMS Core Spec PAMS Toxics

NCore: Further Integration & Optimization

- NOAA/NASA Satellite Data
 - Global/Continental transport
- Other Networks: Deposition, Ecosystems
- Intensive/diagnostic Field Programs

Longer Term Goal:

- Integrated Observation-modeling Complex
 - Similar to Meteorological Models (FDDA)
 - Model Adjustments Through Obs.
 - All in Near Real Time
 - Full Delivery of Model Dimensions
 - (Space, Time, Chemistry, Physical Properties)

Recent efforts fostering NCORE implementation

- Air toxics NATTS (trend sites) at PM2.5 speciation locations
- Addition of aethalometers to NATTS
- Joint OAQPS-OAP (within OAR) test program at CASTNET site(s)
- Additional flexibility in use of STAG (e.g., PM2.5) funds to support more precursor and indicator measurements
- Ongoing initiative submittals

Communications approach

- Goal: describe rationale and benefits, reduce misperceptions, and alleviate concerns associated with change
- STAPPA/ALAPCO and EPA communications experts shaping outreach effort
 - Notification of final draft and comment period through OAQPS director (Sep. 1, 02)
 - Fact sheet.....http://www.epa.gov/ttn/amtic/
 - Brochure and newsletter
 - ALA briefing (OCT 02)
 - CASAC review
 - STAPPA/ALAPCO communications team (Ongoing)

Issues

- Resources
 - No identified \$ for Level 1 sites .. \$2-10M (or >) per year
 - Level 2..Modest initial capital investment~ \$8-20M
 - ITT, new instruments (high sensitivity)
 - Training
- Labor/field orientation to data base/analysis
- Network assessments ..removing monitors
 - Policy conflicts, e.g.,
 - Prior agreements...SIPS, NSR, other
 - Monitor located in designated nonattainment area
 - Reliance on continuous methods (in place of integrated) for regulatory applications
 - Public/community/public health protection perception
 - DNRMIMBY
- Tension associated with balancing between rigorous methods and accommodating new technologies
- Generating consensus and progressing ...given variety of interests, stakeholders, and complex infrastructure